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Chicago Trip Flow Imbalance: Morning Rush Hours

▶ Flow imbalance =
(outflow − inflow) /
(outflow + inflow)

▶ Origin-based pricing is
inefficient

https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
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Spatio-Temporal Pricing for Ridesharing Platforms

Optimal and incentive-compatible pricing:

(trip price) = (trip cost) + (value of a driver at trip origin)
− (value of a driver at trip destination)︸ ︷︷ ︸

network externality, needs full information

Generalization to a stochastic setting: Cashore, Frazier and Tardos (2022).

Main challenge: lack of a demand model!

Hongyao Ma, Fei Fang, and David C. Parkes. Spatio-Temporal Pricing for Ridesharing Platforms. Operations Research, 2022.

Cashore J M, Frazier P I, Tardos E. Dynamic Pricing Provides Robust Equilibria in Stochastic Ride-Sharing Networks. ACM EC 2022: 301-302.
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What Might a Demand Function Look Like?
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Price Trips to Downtown $1 Higher Than Lincoln Park?
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This Work: Iterative Network Pricing

Optimize origin-destination based prices via iterative
adjustments, without using a rider demand model
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Main Results (Informal)

▶ Maximum social welfare ⇐⇒ competitive equilibrium
▶ Suboptimality in social welfare ≤ O(difference in surge multipliers)
▶ Iterative Network Pricing → uniform surge multipliers = maximum welfare

Chenkai Yu and Hongyao Ma (Columbia DRO) Iterative Network Pricing for Ridesharing Platforms 8 / 29



Outline

▶ Model

▶ Original-based market clearing

▶ Iterative Network Pricing

▶ Simulation results and discussions
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Model

Stationary non-atomic supply and demand; m units of driver supply in total
A set of n discrete locations L = {1, 2, . . . , n}
For each pair of locations (i, j) ∈ L2:
▶ ci,j: the cost of driving from i to j incurred by the driver
▶ di,j: the duration of the trip from i to j
▶ qi,j(r): the amount of riders traveling from i to j and have value at least r

Assumptions:
▶ qi,j(r) is strictly decreasing and continuously differentiable for all r ≥ 0
▶ Rider demand {qi,j(r)}i,j∈L does not change week-over-week
▶ The platform can observe current demand level and local price elasticity
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The Welfare-Optimal Outcome
▶ xi,j and yi,j: rider and driver flows from i to j per unit of time, respectively
▶ vi,j(·): inverse function of qi,j(·), i.e., vi,j(s) is the mininum value of the top s ≥ 0

riders traveling from i to j (can cross zero)
▶ Maximize social welfare s.t. supply constraints and flow balance constraints

maximize
x, y ∈ Rn2

∑
i,j∈L

(∫ xi,j

0
vi,j(s)ds − ci,jyi,j

)
(1a)

subject to xi,j ≤ yi,j, ∀i, j ∈ L, (1b)∑
i,j∈L

di,jyi,j ≤ m, (1c)∑
j∈L

yi,j =
∑
j∈L

yj,i, ∀i ∈ L. (1d)
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Competitive Equilibrium

Definition. An outcome (x, y, p) is a competitive equilibrium (CE) if all riders and
drivers are best-responding to the trip prices.

▶ rider best-response: riders are picked-up iff. their value is above the price
▶ driver best-response: no driver can benefit from (i) choosing any alternative

route and any subset of trips on the route, or (ii) not driving for the platform
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A Welfare Theorem

Lemma (Welfare Theorem). A feasible rider and driver flow (x, y) is
welfare-optimal if and only if there exists anonymous trip prices p that support the
outcome in CE.

Lemma (Price Structure). For any CE outcome (x, y, p), there exists ω∗ ≥ 0 and
ϕ∗ ∈ Rn such that for all trips (i, j) ∈ L2,

pi,j = ci,j + di,jω
∗ + (ϕ∗

i − ϕ∗
j ). (2)

▶ ω∗: the “surge multiplier”, representing the marginal value of driver supply
▶ ϕ∗: the origin-destination (OD) based additive adjustments, corresponding to

the marginal value of drivers at different locations
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Duality and CE
Let pi,j, ω, and ϕk be the dual variables corresponding to the feasibility constraints,
(1b), total supply constraint (1c), and flow-balance constraints (1d), respectively.

minimize
p ∈ Rn2

, ω ∈ R, ϕ ∈ Rn
mω +

∑
i,j∈L

∫ qi,j(pi,j)

0
(vi,j(s)− pi,j)ds (3a)

subject to pi,j = ci,j + di,jω + ϕi − ϕj, ∀i, j ∈ L, (3b)
pi,j ≥ 0, ∀i, j ∈ L, (3c)
ω ≥ 0. (3d)

When prices are given by p, ω can be interpreted as drivers’ surplus rate, and the
objective can be interpreted as the (nominal) total surplus of riders and drivers.

Optimality ⇔ primal objective = dual objective ⇔ driver and rider best-response.
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Outline

▶ Model

▶ Original-based market clearing

▶ Iterative Network Pricing

▶ Simulation results and discussions



Origin-Based Market Clearing (Informal)

Tune the origin-based surge multiplier at each region based on the supply and
demand at that region

Outcome: a stationary outcome where the surge multiplier at each region is
▶ high enough so that all riders willing to pay are served
▶ low enough so that all drivers are dispatched

Caveat: Price cannot be negative. Once the price is too low, drivers will rather
relocate without a rider.
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(Coordinated) Origin-Based Market Clearing
Given ϕ ∈ Rn, and origin-based multipliers π ∈ Rn, prices are of the form

pi,j = ci,j + di,jπi + ϕi − ϕj, ∀i, j ∈ L. (4)

Definition. Given ϕ ∈ Rn, π ∈ Rn is market-clearing if (i) trip prices p are
non-negative, and (ii) there exists feasible rider and driver flow (x, y) such that:
▶ rider best-response: xi,j = qi,j(pi,j) for all i, j ∈ L
▶ all drivers are dispatched:

∑
i,j∈L di,jyi,j = m

▶ coordinated relocation: yi,j − xi,j = q̃i,j(pi,j) for all i, j ∈ L

The platform chooses “phantom demand” q̃ = (q̃i,j)(i,j)∈L2 such that q̃i,j(0)di,j ≥ m
for all i, j ∈ L
Maximum slackness ei,j ≜ supr≥0 r · q̃i,j(r)
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Existence, Uniqueness, and Optimality

Lemma (Existence and Uniqueness). Given any OD-based adjustments ϕ ∈ Rn,
there exists a unique set of origin-based multipliers π ∈ Rn that clears the market.

Allows defining a mapping Π : ϕ 7→ π.

Lemma (Optimality). The difference between the optimal welfare and the welfare
achieved under an origin-based market-clearing outcome with multipliers π is at
most:

m
(
max

i∈L
πi −min

i∈L
πi

)
+ m

(
0 −max

i∈L
πi

)+

+
∑
i,j∈L

ei,j. (5)

Suggests minimizing maxi πi −mini πi.
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Outline

▶ Model

▶ Original-based market clearing

▶ Iterative Network Pricing

▶ Simulation results and discussions



Naı̈ve Gradient Descent

Given a current market-clearing outcome, we can compute the gradient of the
dual objective — a direction to change (ϕ,π)

Why naı̈ve gradient descent does not work:

▶ The platform cannot control π, which is the result of market clearing
▶ The gradient w.r.t. ϕ is zero when rider flow is balanced

Denote Π as the mapping from ϕ to the market-clearing multipliers π.

Lemma. Π is continuously differentiable, and the Jacobian matrix DΠ at any ϕ
can be computed using the corresponding market-clearing outcome.

After replacing π with Π(ϕ), the dual objective as a function of ϕ is not convex!
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Iterative Network Pricing (Intuition)

▶ The optimality bound suggests minimizing the spread of π, reducing the
problem to solving a system of non-linear equations

Π1(ϕ) = Π2(ϕ) = · · · = Πn(ϕ)

▶ A damped Newton’s method with backtracking line search
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Iterative Network Pricing
At t = 0: start from the initial market-clearing outcome with ϕ(0) = 0.
At every t > 0, after observing the market-clearing outcome of period t − 1:
▶ move ϕ(t) in the direction of

[
−DΠ(ϕ(t−1)) 1

]−1
π(t−1), for a step-size such

that no πi is expected to change by more than τ , unless
▶ if there is not sufficient improvement in f , where

f (ϕ) ≜
∑

i∈L

(
Πi(ϕ)− 1

n

∑
j∈L Πj(ϕ)

)2
, reduce the size of the previous step.

Theorem
The INP mechanism converges to an outcome where all origin-based multipliers
are equal, i.e. ∃ω⋆ s.t. limt→∞ π

(t)
i = ω⋆ for all i ∈ L. The welfare-suboptimality of

the limiting outcome is upper bounded by mmax{0,−ω⋆}+
∑

i,j∈L ei,j.
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Outline

▶ Model

▶ Original-based market clearing

▶ Iterative Network Pricing

▶ Simulation results and discussions



Chicago Morning Rush Hours

(a) Optimal OD-based adjustments (b) The naive origin-based multipliers
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Stationary Market Condition (1 of 3)
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(a) OD-based adjustments ϕ(t)
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Stationary Market Condition (2 of 3)
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Stationary Market Condition (3 of 3)
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Non-stationary Market Condition: Wed 8-9am 2019-2020

0 20 40 60 80 100
Week

0.25

0.50

0.75

1.00

1.25

1.50

1e4

(a) Total trip volume

0 20 40 60 80 100
Week

0.6

0.4

0.2

0.0

0.2

0.4

0.6

residential
downtown

(b) Flow imbalance

Chenkai Yu and Hongyao Ma (Columbia DRO) Iterative Network Pricing for Ridesharing Platforms 25 / 29



ϕ(t) and π(t) Under INP
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Social Welfare and Welfare Ratio
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Origin-Based Multipliers π(t−1) as the Update Direction
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Discussions
This work: optimal origin-destination based pricing without a demand model

Related literature on iterative mechanisms, e.g. combinatorial auctions

Next steps
▶ Non-stationary market conditions and slow market equilibration

▶ Noisy observations of rider demand, elasticity, and driver earnings

▶ Strategic drivers, and competition between platforms

Thank You!
https://arxiv.org/abs/2311.08392
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APPENDIX



Chicago Market Dynamics



Trip Volume by Hour-of-Week

0 12 24 36 48 60 72 84 96 108 120 132 144 156
Hour of Week

0.0

0.5

1.0

1.5

2.0

2.5

1e5

Gray bar: morning rush hours 7-9am; Green bar: evening rush hours 5-7pm
Chenkai Yu and Hongyao Ma (Columbia DRO) Iterative Network Pricing for Ridesharing Platforms 30 / 29



Flow Imbalance by Hour-of-Week: The Loop

0 12 24 36 48 60 72 84 96 108 120 132 144 156
Hour of Week

0.6

0.4

0.2

0.0

0.2

0.4

Gray bar: morning rush hours 7-9am; Green bar: evening rush hours 5-7pm
Chenkai Yu and Hongyao Ma (Columbia DRO) Iterative Network Pricing for Ridesharing Platforms 31 / 29



Flow Imbalance by Hour-of-Week: Lake View
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Distribution of Trip Duration
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(b) Cumulative distribution of trip duration
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Additional Simulations: Stationary Market Conditions



The “Pure Newton” Method
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Gradient Descent w.r.t. f
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π as the Direction (1 of 3)
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Chicago Morning Rush: π as the Direction (2 of 3)
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π as the Direction (3 of 3)
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Additional Simulations: Chicago 2019-2020



Optimal ϕ and naive π
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π as the Direction
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A Two-Location Example: Morning Rush Hour



Example: Morning Rush Hour

1 2

10 riders/min

no demand

no demand 20 riders/min

▶ Trips within each location takes 10 mins to complete while trips between
locations take 20 mins.

▶ Rider values are exponentially distributed, with mean values 40 for the (1,2)
trip, and 10 for the (2,2) trip.

▶ A total of m = 240 drivers are available, and assume zero trip costs.
▶ Under the welfare-optimal outcome, y1,2 = y2,1 = 4 and y2,2 = 8. Moreover,

ω ≈ 0.916, ϕ1 − ϕ2 ≈ 18.33, leading to p1,2 = d1,2ω + ϕ1 − ϕ2 = 4p2,2 ≈ 36.64.
▶ The naive “origin-based market-clearing” outcome has π2 = 0 and π1 > 4.

Chenkai Yu and Hongyao Ma (Columbia DRO) Iterative Network Pricing for Ridesharing Platforms 41 / 29



Morning Rush Hour: Origin-Based Market Clearing
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Assumption: undispatched drivers at location 2 relocate back to location 1.
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Morning Rush Hour: Iterative Network Pricing
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Morning Rush Hour: Iterative Network Pricing (Cont)
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Reliable yet Flexible

Reliability for riders:
“Transportation as reliable as running water, everywhere, for everyone”

Flexibility for drivers:
“Work that puts you first— drive when you want, earn what you need”

http://time.com/time-person-of-the-year-2015-runner-up-travis-kalanick/

https://www.uber.com/drive/

Chen M K. Dynamic Pricing in a Labor Market: Surge Pricing and Flexible Work on the Uber Platform. ACM EC 2016: 455-455.

Chenkai Yu and Hongyao Ma (Columbia DRO) Iterative Network Pricing for Ridesharing Platforms 45 / 29

http://time.com/time-person-of-the-year-2015-runner-up-travis-kalanick/
https://www.uber.com/drive/


Market Failure (1 of 3): Prices Not Spatially Smooth

https://uberpeople.net/threads/for-the-seattle-veterans.223372/
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Market Failure (2 of 3): Prices Not Temporally Smooth

http://www.nbcsports.com/boston/boston-bruins/five-games-to-watch-on-boston-bruins-schedule
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Market Failure (3 of 3): Destinatio-Oblivious Surge
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“Network Value” by Destination

https://web.archive.org/web/20210825043610/https://eng.uber.com/powering-network-pricing-model/
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Uber’s Upfront Trip Information

https://therideshareguy.com/uber-rolling-out-new-driver-features/

https://www.uber.com/blog/california/keeping-you-in-the-drivers-seat-1/
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Driver Upfront Fare and Destination on Uber

https://www.uber.com/newsroom/only-on-uber/
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“Phantom Demand” Coordinates Driver Relocation

rider demand + phantom demand = effective total demand

▶ For each trip (i, j) ∈ L2, construct q̃i,j s.t. q̃i,j(0) = m/di,j

▶ The maximum “slackness” ei,j ≜ supr≥0 r · q̃i,j(r) should not be too big
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Chicago Morning Rush Hours: the Optimal ϕ∗

(a) Status quo trip flow imbalance (b) The welfare-optimal ϕ∗

https://kepler.gl/demo/map?mapUrl=https://dl.dropboxusercontent.com/s/a3o2i8bfd6ra36a/keplergl_z4qmat6.json

Assumptions: rider values are exponentially distributed with mean $1/min × trip duration; driver cost $1/3/min. Min. number of drivers to fulfill the rider trips.
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Chicago Morning Rush Hours: Origin-Based Surge

(a) Status quo trip flow imbalance i.e.,
pi,j = ci,j + di,jπi

(b) Naive surge multipliers π
(i.e. pi,j = ci,j + di,jπi)

Assumptions: rider values are exponentially distributed with mean $1/min × trip duration; driver cost $1/3/min. Min. number of drivers to fulfill the rider trips.
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The Primal (with Redundant Constraints)

maximize
x, y ∈ Rn2

, z ∈ Rn

∑
i,j∈L

(∫ xi,j

0
vi,j(s)ds − ci,jyi,j

)
(6a)

subject to xi,j ≤ yi,j, ∀i, j ∈ L, (6b)∑
i,j∈L

di,jyi,j = zi, ∀i ∈ L, (6c)∑
i∈L

zi ≤ m, (6d)∑
j∈L

yk,j =
∑
i∈L

yi,k, ∀k ∈ L. (6e)

(6c) and (6d) replace the original total supply constraint
∑

i,j∈L di,jyi,j ≤ m.
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The Dual (with Origin-Based Multipliers)

minimize
p ∈ Rn2

, ω ∈ R, π ∈ Rn, ϕ ∈ Rn
mω +

∑
i,j∈L

∫ qi,j(pi,j)

0
(vi,j(s)− pi,j)ds (7a)

subject to pi,j = ci,j + di,jπi + ϕi − ϕj, ∀i, j ∈ L, (7b)
pi,j ≥ 0, ∀i, j ∈ L, (7c)
ω ≥ πi, ∀i ∈ L, (7d)
ω ≥ 0. (7e)
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Dual Obj − Primal Obj = Violation of Best Response
∑
i,j∈L

∫ qi,j(pi,j)

xi,j

(vi,j(s)− pi,j)ds (8a)

+
∑
i∈L

zi(ω − πi) (8b)

+
∑
i,j∈L

pi,j(yi,j − xi,j) (8c)

+ω
(

m −
∑
i∈L

zi

)
. (8d)

▶ (8a): violation of “riders are picked up iff. their value is aboce the price”
▶ (8b): violation of “all drivers getting highest possible surplus rate”
▶ (8c): violation of “price must be zero if supply exceeds demand”
▶ (8d): violation of “no driver is sent home if some driver gets positive surplus”
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